ALKALOID




Pengertian Senyawa Alkaloid
Alkaloid adalah senyawa organik yang terdapat di alam bersifat basa atau alkali dan sifat basa ini disebabkan karena adanya atom N (Nitrogen) dalam molekul senyawa tersebut dalam struktur lingkar heterosiklik atau aromatis, dan dalam dosis kecil dapat memberikan efek farmakologis pada manusia dan hewan.
Alkaloid juga adalah suatu golongan senyawa organik yang terbanyak ditemukan di alam. Hampir seluruh senyawa alkaloida berasal dari tumbuh-tumbuhan dan tersebar luas dalam berbagai jenis tumbuhan. Semua alkaloida mengandung paling sedikit satu atom nitrogen.
Hampir semua alkaloida yang ditemukan di alam mempunyai keaktifan biologis tertentu, ada yang sangat beracun tetapi ada pula yang sangat berguna dalam pengobatan. Misalnya kuinin, morfin dan stiknin adalah alkaloida yang terkenal dan mempunyai efek sifiologis dan fisikologis. Alkaloida dapat ditemukan dalam berbagai bagian tumbuhan seperti biji, daun, ranting dan kulit batang. Alkaloida umunya ditemukan dalam kadar yang kecil dan harus dipisahkan dari campuran senyawa yang rumit yang berasal dari jaringan tumbuhan.
   Alkaloid adalah suatu golongan senyawa organik yang terbanyak ditemukan di alam. Hampir seluruh alkaloid berasal dari tumbuh-tumbuhan dan tersebar luas dalam berbagai jenis tumbuhan tingkat tinggi. Sebagian besar alkaloid terdapat pada tumbuhan dikotil sedangkan untuk tumbuhan monokotil dan pteridofita mengandung alkaloid dengan kadar yang sedikit.  Pengertian lain Alkaloid adalah senyawa organik yang terdapat di alam bersifat basa atau alkali dan sifat basa ini disebabkan karena adanya atom N (Nitrogen) dalam molekul senyawa tersebut dalam struktur lingkar heterosiklik atau aromatis, dan dalam dosis kecil dapat memberikan efek farmakologis pada manusia dan hewan. Sebagai contoh, morfina sebagai pereda rasa sakit, reserfina sebagai obat penenang, atrofina berfungsi sebagai antispamodia, kokain sebagai anestetik lokal, dan strisina sebagai stimulan syaraf (Ikan, 1969). Selain itu ada beberapa pengecualian, dimana termasuk golongan alkaloid tapi atom N (Nitrogen) terdapat di dalam rantai lurus atau alifatis.

      Prinsip Dasar Pembentukan Alkaloid
Asam amino merupakan senyawa organik yang sangat penting, senyawa ini terdiri dari amino (NH2) dan karboksil (COOH). Ada 20 jenis asam amino esensial yang merupakan standar atau yang dikenal sebagai alfa asam amino alanin, arginin, asparagin, asam aspartat, sistein, asam glutamat , glutamin, glisin, histidine, isoleusin, leusin, lysin, metionin, fenilalanine, prolin, serine, treonine, triptopan, tirosine, and valin(4). Dari 20 jenis asam amino yang disebutkan diatas, alkaloid diketahui berasal dari sejumlah kecil asam amino yaitu ornitin dan lisin yang menurunkan alkaloid alisiklik, fenilalanin dan tirosin yang menurunkan alkaloid jenis isokuinolin, dan triftopan yang menurunkan alkaloid indol. Reaksi utama yang mendasari biosintesis senyawa alkaloid adalah reaksi mannich antara suatu aldehida dan suatu amina primer dan sekunder, dan suatu senyawa enol atau fenol. Biosintesis alkaloid juga melibatkan reaksi rangkap oksidatif fenol dan metilasi. Jalur poliketida dan jalur mevalonat juga ditemukan dalam biosintesis alkaloid. Kemudian reaksi yang mendasari pembentukan alkaloid membentuk basa. Basa kemudian bereaksi dengan karbanion dalam kondensasi hingga terbentuklah alkaloid.
Disamping reaksi-reaksi dasar ini, biosintesa alkaloida melibatkan reaksi-reaksi sekunder yang menyebabkab terbentuknya berbagai jenis struktur alkaloida. Salah satu dari reaksi sekunder ini yang terpenting adalah reaksi rangkap oksidatif fenol pada posisi orto atau para dari gugus fenol. Reaksi ini berlangsung dengan mekanisme radikal bebas.
Reaksi-reaksi sekunder lain seperti metilasi dari atom oksigen menghasilkan gugus metoksil dan metilasi nitrogen menghasilkan gugus N-metil ataupun oksidasi dari gugus amina. Keragaman struktur alkaloid disebabkan oleh keterlibatan fragmen-fragmen kecil yang berasal dari jalur mevalonat, fenilpropanoid dan poliasetat.
Dalam biosintesa higrin, pertama terjadi oksidasi pada gugus amina yang diikuti oleh reaksi Mannich yang menghasilkan tropinon, selanjutnya terjadi reaksi reduksi dan esterifikasi menghasilkan hiosiamin.

B.  Klasifikasi Alkaloida
Alkaloid biasanya diklasifikasikan menurut kesamaan sumber asal molekulnya (precursors), didasari dengan metabolisme pathway (metabolic pathway) yang dipakai untuk membentuk molekul itu. Kalau biosintesis dari sebuah alkaloid tidak diketahui, alkaloid digolongkan menurut nama senyawanya, termasuk nama senyawa yang tidak mengandung nitrogen (karena struktur molekulnya terdapat dalam produk akhir. sebagai contoh: alkaloid opium kadang disebut "phenanthrenes"), atau menurut nama tumbuhan atau binatang dimana senyawa itu diisolasi. Jika setelah alkaloid itu dikaji, penggolongan sebuah alkaloid diubah menurut hasil pengkajian itu, biasanya mengambil nama amine penting-secara-biologi yang mencolok dalam proses sintesisnya.
Klasifikasi  alkaloida dapat dilakukan berdasarka beberapa cara yaitu :
1.    Berdasarkan jenis cicin heterosiklik nitrogen yang merupakan baian dari struktur molekul. Berdasarkan hal tersebut, alkaloid dibedakan atas beberapa jenis seperti :

Gambar. Struktur Piridina

·       Golongan Pyrrolidinehygrinecuscohygrinenikotina
     
gambar. Struktur Pyrrolidine

·Golongan Isokuinolina: alkaloid-alkaloid opium (papaverinenarcotine,narceine), sanguinarinehydrastineberberineemetine, berbamine, oxyacanthine. 
   
    
              Gambar. Struktur Kuinolina

 ·       Golongan Indola:
o   Ergolines (alkaloid-alkaloid dari ergot ): ergineergotaminelysergic acid
o   Yohimbans: reserpineyohimbine
o   Alkaloid Vincavinblastinevincristine
o   Alkaloid Kratom (Mitragyna speciosa): mitragynine7-hydroxymitragynine
Gambar. Struktur Indol
2.    Berdasarkan jenis tumbuhan dari mana alkaloida ditemukan.
3.    Berdasarkan asal-usul biogenetic. Berdasarkna hal ini alkaloida dapat dibedakan atas tiga jenis utama yaitu :
a.    Alkaloida alisiklik yang berasal dari asam-asam amino ornitin dan lisin.
b.    Alkaloida aromatik jenis fenilalanin yang berasal dari fenilalanin, tirosin dan 3,4 – dihidrofenilalanin.
c.    Alkaloida aromatik jenis indol yang berasal dari triptopan.

Sistem klasifikasi yang paling banyak diterima adalah menurut Hegnauer, dimana alkaloida dikelompokkan atas :
1.    Alkaloida sesungguhnya, alkaloida ini merupakan racun, senyawa tersebut menunjukkan aktivitas fisiologis yang luas, hamper tanpa kecuali bersifat basa. Umumnya mengandung nitrogen dalam cicin heterosiklik, diturunkan dari asam amino, biasanya terdapat dalam tanaman sebagai garam asam organik. Beberapa pengecualian terhadap aturan tersebut adalah kolkhisin dan asam aristolkhoat yang bersifat bukan basa dan tidak memiliki cicin heterosiklik dan alkaloida quartener yang bersifat agak asam daripada bersifat basa.
2.    Protoalkaloida, merupakan amin yang relative sederhana dimana nitrogen asam amino tidak terdapat dalam cicin heterosiklik. Protoalkaloida diperoleh berdasarkan biosintesa dari asam amino yang bersifat basa. Pengeertian amin biologis sering digunakan untuk kelompok ini.
3.    Pseudoalkaloida, tidak diturunkan dari  precursor asam amino. Senyawa ini biasanya bersifat basa. Ada dua seri alkaloida yang penting dalam kelompok ini yaitu alkaloida steroidal dan purin.

C.  Sifat  Senyawa Alkaloid
Kebanyakan alkaloida berupa padatan Kristal dengan titik lebur yang tertentu atau mempunyai kisaran dekomposisinya. Dapat juga berbentuk amorf dan beberapa seperti nikotin dan konini berupa cairan.
Kebanyakan alkaloida tak berwarna, tetapi beberapa senyawa kompleks spesies aromatik berwarna. Pada umumnya basa bebas alkaloida hanya larut dalam pelarut organik meskipun beberapa pseudoalakaloid dan protoalkaloida larut dalam air. Garam alkaloida dan alkaloida quaterner sangat larut dalam air.
Alkaloida bersifat basa yang tergantung pada pasangan electron pada nitrogen. Jika gugus fungsional yang berdekatan dengan nitrogen bersifat melepaskan elektron maka ketersediaan electron pada nitrogen naik dan senyawa lebih bersifat menarik elektron maka ketersediaan pasangan electron berkurang dan pengaruh yang ditimbulkan alkaloida dapat bersifat netral atau bahkan bersifat sedikit asam.
Kebasaan alkaloida menyebabkan senyawa tersebut sangat mudah mengalami dekomposisi terutama oleh panas dan sinar dengan adanya oksigen. Hasil reaksi ini sering berupa N-oksida. Dekomposisi olakloida selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu lama. Pembentukan garam dengan senyawa organik atau anorganik sering mencegah dekomposisi.

D.  Reaksi Senyawa Fenolik
Reaksi umum untuk alkaloid
1. Reaksi pengendapan untuk alkaloid
Reaksi Mayer : HgI2
·       Cara : zat + pereaksi Mayer timbul endapan kuning atau larutan kuning bening → + alakohol endapannya larut. Reaksi dilakukan di objek glass lalu Kristal dapat dilihat di mikroskop. Jika dilakukan di tabung reaksi lalu dipindahkan, Kristal dapat rusak. Tidak semua alkaloid mengendap dengan reaksi mayer. Pengendapan yang terjadi akibat reaksi mayer bergantung pada rumus bangun alkoloidnya.

Reaksi Bouchardat
·       Cara : sampel zat + pereaksi Bouchardat  → coklat merah, + alkohol  → endapan larut.

2. Reaksi warna
  • Dengan asam kuat : H2SOpekat dan HNO3 pekat (umumnya menghasilkan warna kuning atau merah)
  • Pereaksi Marquis
    • Zat + 4 tetes formalin + 1 ml H2SO4 pekat (melalui dinding tabung, pelan-pelan)  → warna.
    • Pereaksi Forhde : larutan 1% NH4 molibdat dalam H2SO4 pekat
§   Zat + pereaksi Forhde  → kuning kecoklatan
§   Zat + diazo A (4 bagian) + diazo B (1 bagian) + NaOH sampai alkalis  → warna merah intensif.
§   Reaksi Nelzer Larutan zat dalam alkohol absolut + 1 tetes CuSO4dan CS2 à warna coklat seperti minyak.
§   Reaksi Mandelin : zat + H2SO+ FeCl3àwarna
§   Reaksi Roux: 1 tts NaOH + 1 tts KMnO+ 20 tts Na nitroprusid à kocok à larutan dan endapan, larutan diambil.
§   Reaksi Serulas & Lefort : larutan zat dalam H2SO4 encer + KI + CHCl3 à dikocok; lapisan CHCl3 akan berwarna.
§   Reaksi Huseman : zat + H2SO4 pekat à dipanaskan di atas api sehingga dihasilkan apomorfin + HNO3 65% + KNO3 padat à warna.
§   Reaksi Bosman: larutan zat dalam H2SO4 encer  + KMNO4 à dikocok dengan CHCl3; lapisan CHCl3 akan berwarna violet kemudian terbentuk endapan coklat.
§   Reaksi Zwikker : Zat +1 ml Pyridin 10% + CuSO4 à batang panjang tidak berwarna, Kristal tidak spesifik dan dibuat di objek glass.
§   Reaksi Mandelin  amonium vanadat  ½ % dalam air + H2SO4 pekat.
§   Reaksi Murexide : Zat + 1 tetes H2O2  3 % atau KClO3  padat +    1 tetes HCl 25%, panaskan di water bath hingga kering à agak Jingga; + NH4OH à warna Ungu
§   Reaksi Parri : Zat + Co(NO3)2, lalu + uap NH4OH warna ungu.
      • Reaksi Vitally : zat + HNO3 berasap, diuapkan di atas water bath sampai kering, + spir/alkali ungu, tahan dalam aseton
        • Apomorfin : merah
        • Strychnine : merah ungu
        • Veratrin : coklat jingga
§   Reaksi Lieberrman: H2SO4 pekat + HNO3 pekat
§   Reaksi Sanchez : zat + p-nitrodiabendazol (p-nitoanilin +NaNO2 + NaOH)à ungu à jingga.
§   Reaksi Pesez : zat + H2SO4 + lar. KBr, panaskan di atas water bath à hijau, ditarik dengan CHCl3 à biru hijau.
§   Reaksi Thalleiochin : larutan zat dalam asam asetat encer + 1 tetes aqua brom + NH4OH berlebihàhijau zamrud + kloroformàdifloresensi
§   Reaksi Erytrochin : larutan zat dalam HCl encer + aqua brom (hingga kuning) + kalium ferrocyanida + CHCl3 + NH4OH, kocok homogen → lapisan CHCl3 berwarna merah.
§   Reaksi Sanchez. (reagen : larutan jenuh p-nitronilin dalam 1% H2SO4 + NaNO2). Zat + H2SO4 75 % + 1 tetes reagen + NaOH → ungu tua, asamkan dengan H2SO4 → jingga.
§   Reaksi Feigel : 5 tetes H2SO4 pkt + sedikit yohimbin ad larut + kristal khloral hidrat panaskan di WB → merah biru stabil, + air → warna hilang.
§   Reaksi esterifikasi :  Zat + alkohol + H2SO4 conc. Panaskan → bau khas.
§   Reaksi isonitril : Zat + spiritus + KOH → panaskan → ditambah CHCl3 → panaskan lagi → bau iso nitril (segera diasamkan karena bau beracun/busuk)
§   Reaksi Runge : Dipanaskan dengan HCl 25% → dinginkan → ditambah NaOH ad basa lemah → berwarna ungu kotor
§   Reaksi Indophenol:  Panaskan dengan HCl → dinginkan diencerkan dengan air + phenol + kaporit → nampak ungu kotor → ditambah NH4OH berlebih → berwarna biru + HNO3à tidak berwarna kuning.
§   Reaksi Ehrlich : Zat padat + pereaksi p-DAB HCl → berwarna kuning kenari
§   Reaksi Wassicky : zat + p-DAB +H2SO4 pekat à merah ungu
§   Reaksi korek api : zat + HCl lalu batang korek api dicelupkan à jingga/kuning.
3. Reaksi Kristal:
  1. Reaksi Kristal dragendorf
Pada objek glass, zat +HCl aduk, lalu teteskan dragendorf di pinggirnya dan jangan dikocok, diamkan 1 menit  Kristal dragendorf

2.                 2.  Reaksi Fe-complex & Cu-complex:
Pada objek glass, gas ditetesi dengan Fe-compleks dan Cu-complex lalu tutup dengan cover glass  panaskan sebentar, lalu lihat Kristal yang terbentuk.
1.    Pada objek glass, zat + asam lalu ditaburkan serbuk sublimat dengan spatel, sedikit saja digoyangkan di atasnya à Kristal terlihat.
2.    Reaksi Iodoform : zat ditetesi NaOH sampai alkali + sol. Iodii lalu dipanaskan hingga berwarna kuning (terbentuk iodoform), lalu lihat Kristal bunga sakura di mikroskop.
3.    Reaksi Herapatiet. (reagen : air + spirtus + asam cuka biang + sedikit H2SO4 dan aqua iod sampai agak kuning pada objek glass). Zat + 1 tetes reagen → kristal lempeng (coklat/violet)

  Identifikasi Senyawa Alkaloid
 Alkaloid Derivat Fenil Alanin
 Alkaloid Amin
Efedrin HCl
Asal (efedrin)  : Ephedra vulgaris
Organoleptis    : serbuk putih halus, tidak berbau, rasa pahit
Kelarutan        : larut dalam lebih kurang 4 bagian air
Reaksi Identifikasi:
1. Larutan zat dalam air + PbSO4 + NaOH  violet.
2. Larutan zat dalam air +NaOH 0,1 N + 3 ml CCl4  dikocok , dibiarkan  pisahkan lapisan organik + sedikit tembaga à kocok à keruh lalu terbentuk endapan.
3. Reaksi oksidasi oleh KMnO bau benzaldehid.
4. Reaksi iodoform (+)
5. Reaksi Nelzer: Larutan zat dalam alkohol absolut + 1 tetes CuSO4dan CS2  coklat minyak.
6. Zat + sulfanilat + NaOH  merah.
7. Larutan zat dalam air + HCl, + H2O2 + NaCl + 6 tetes NaOH  merah violet.
8. Larutan zat dalam air + AgNO endapan (AgCl), dicuci dengan air, + NH4OH  endapan akan larut kembali.
1.2 Alkaloid Benzil Isokuinolon
1.2.1 Morfin
Asal: Papaver somniferum
Sinonim           : Dionin
Organoleptis    : kristal putih
Kelarutan        : larut dalam 12 bagian air
Reaksi Identifikasi:
1. Reaksi KING, SANCHEZ, dan FESEZ (+)
2. Zat + H2SO4 + FeCl3  dipanaskan dalam air mendidih  berwrna biru + HNO3  berwarna merah/coklat merah tua.
1.              Reaksi iodoform (+)
2.              Reaksi FROHDE: kuning hijau.
3.              Reaksi MANDELIN: kuning hijau.
4.              Reaksi MARQUIS: ungu dalam waktu lama.
5.              Larutan zat dalam HCl + I2 à endapan yang larut dalam spiritus. 
   Fungsi Alkaloid
Alkaloid telah dikenal selama bertahun-tahun dan telah menarik perhatian terutama karena pengaruh fisiologinya terhadap mamalia dan pemakaiannya di bidang farmasi, tetapi fungsinya dalam tumbuhan hampir sama sekali kabur. Beberapa pendapat mengenai kemungkinan perannya dalam tumbuhan sebagai berikut (Gritter, 1995):
a.    Alkaloid berfungsi sebagai hasil buangan nitrogen seperti urea dan asam urat dalam hewan (salah satu pendapat yang dikemukan pertama kali, sekarang tidak dianut lagi).
b.   Beberapa alkaloid mungkin bertindak sebagai tandon penyimpanan nitrogen meskipun banyak alkaloid ditimbun dan tidak mengalami metabolisme lebih lanjut meskipun sangat kekurangan nitrogen.
c.    Pada beberapa kasus, alkaloid dapat melindungi tumbuhan dari serangan parasit atau pemangsa tumbuhan. Meskipun dalam beberapa peristiwa bukti yang mendukung fungsi ini tidak dikemukakan, mungkin merupakan konsep yang direka-reka dan bersifat ‘manusia sentris’.
d.   Alkaloid dapat berlaku sebagai pengatur tumbuh, karena dari segi struktur, beberapa alkaloid menyerupai pengatur tumbuh. Beberapa alkaloid merangasang perkecambahan yang lainnya menghambat.
e.    Semula disarankan oleh Liebig bahwa alkaloid, karena sebagian besar bersifat basa, dapat mengganti basa mineral dalam mempertahankan kesetimbangan ion dalam tumbuhan.
Salah satu contoh alkaloid yang pertama sekali bermanfaat dalam bidang medis adalah morfin yang diisolasi tahun 1805. Alkaloid diterpenoid yang diisolasi dari tanaman memiliki sifat antimikroba. Solamargine, suatu glikoalkoid dari tanaman berri solanum khasianum mungkin bermanfaat terhadap infeksi HIV dan infeksi intestinal yang berhubungan dengan AIDS.
Ketika alkaloid ditemukan memiliki efek antimikroba temasuk terhadap Giarde dan Entamoeba, efek anti diare utama mereka kemungkinan disebabkan oleh efek mereka pada usus kecil. Berberin merupakan satu contoh penting alkaloid yang potensial efektif terhadap typanosoma dan plasmodia. Mekanisme kerja dari alkaloid kuartener planar aromatik seperti berberin dan harman dihubungkan dengan kemampuan mereka untuk berinterkalasi dengan DNA.    
Tanaman Penghasil Alkaloid
            Senyawa alkaloid merupakan senyawa organik terbanyak ditemukan di alam. Hampir seluruh alkaloid berasal dari tumbuhan dan tersebar luas dalam berbagai jenis tumbuhan. Secara organoleptik, daun-daunan yang berasa sepat dan pahit, biasanya teridentifikasi mengandung alkaloid. Selain daun-daunan, senyawa alkaloid dapat ditemukan pada akar, biji, ranting, dan kulit kayu.
            Alkaloid dihasilkan oleh banyak organisme, mulai dari bakteria, fungi (jamur), tumbuhan, dan hewan. Ekstraksi secara kasar biasanya dengan mudah dapat dilakukan melalui teknik ekstraksi asam-basa. Rasa pahit atau getir yang dirasakan lidah dapat disebabkan oleh alkaloid. Istilah "alkaloid" (berarti "mirip alkali", karena dianggap bersifat basa) pertama kali dipakai oleh Carl Friedrich Wilhelm Meissner (1819), seorang apoteker dari Halle (Jerman) untuk menyebut berbagai senyawa yang diperoleh dari ekstraksi tumbuhan yang bersifat basa (pada waktu itu sudah dikenal, misalnya, morfina, striknina, serta solanina). Hingga sekarang dikenal sekitar 10.000 senyawa yang tergolong alkaloid dengan struktur sangat beragam, sehingga hingga sekarang tidak ada batasan yang jelas untuknya.
            Cokelat adalah makanan yang diolah dari biji kakao. Cokelat mengandung alkaloid-alkaloid seperti teobromin, fenetilamina, dan anandamida yang memiliki efek fisiologis untuk tubuh. Kandungan-kandungan ini banyak dihubungkan dengan tingkat serotonin dalam otak. Menurut ilmuwan, cokelat jika dimakan dalam jumlah normal secara teratur dapat menurunkan tekanan darah.
            Tembakau mengandung senyawa alkaloid, diantaranya adalah nikotin. Nikotin termasuk dalam golongan alkaloiod yang terdapat dalam famili Solanaceae. Nikotin dalam jumlah banyak terdapat dalam tanaman tembakau, sedang dalam jumlah kecil terdapat pada tomat, kentang dan terung. Nikotin dan kokain dapat pula ditemukan pada daun tanaman kota. Kadar nikotin berkisar antara 0,6-3,0 % dari berat kering tembakau, dimana proses biosintesisnya terjadi di akar dan terakumulasi pada daun tembakau. Nikotin terjadi dari biosintesis unsur N pada akar dan terakumulasi pada daun. Fungsi nikotin adalah sebagai bahan kimia antiherbivora dan adanya kandungan neurotoxin yang sangat sensitif bagi serangga, sehingga nikotin digunakan sebagai insektisida pada masa lalu.
            Kecubung adalah tumbuhan penghasil bahan obat-obatan yang telah dikenal sejak ribuan tahun,di antaranya Datura Stramonium, Datura tatura, dan Brugmansia suaviolens, namun daya khasiat masing-masing jenis kecubung, berbeda-beda. Penyalahgunaan kecubung memang sering terjadi, sehingga bukan obat yang didapat malah racun (menyebabkan pusing) yang sangat berbahaya. Hampir seluruh bagian tanaman kecubung dapat dimanfaatkan sebagai obat. Hal ini disebabkan seluruh bagiannya mengandung alkaoida atau disebut hiosamin (atropin) dan scopolamin, seperti pada tanaman Atropa belladona.Alkahoid ini bersifat racun sehingga pemakaiannya terbatas pada bagian luar. Biji kecubung mengandung hiosin dan lemak, sedangkan daunnya mengandung kalsium oksalat. Berkhasiat mengobati rematik, sembelit, asma, sakit pinggang, bengkak, encok, eksim, dan radang anak telinga.
            Kopi juga termasuk ke dalam tanaman yang mengandung senyawa alkaloid. Kopi terkenal akan kandungan kafeinnya yang tinggi. Kafein kopi merupakan senyawa hasil metabolisme sekunder golongan alkaloid dari tanaman kopi dan memilik rasa yang pahit.
            Buah pare dalam bahasa latin disebut Momordica charantia L berasal dari kawasan Asia Tropis. Buahnya mengandung albiminoid, karbohidrat, dan zat warna, daunnya mengandung momordisina, momordina, karantina, resin, dan minyak lemak. Bijinya mengandung saponin, alkaloid, triterprenoid, dan asam momordial. Manfaat buah ini dapat merangsang nafsu makan, menyembuhkan batuk, memperlancar pencernaan, membersihkan darah bagi wanita yang baru melahirkan, dapat menyembuhkan penyakit kuning, juga cocok untuk menyembuhkan mencret pada bayi.
    Prosedur Umum Pengujian Alkaloid
Secara umum senyawa alkaloid diekstrak dari tumbuhan menggunakan beberapa pelarut untuk menghilangkan lemak yang tercampur, kemudian ekstraknya dibasakan dengan larutan NH310% dan Al2O3. Campuran ini selanjutnya dipisahkan secara kromatografi kolom dan diidentifikasi. Identifikasi senyawa alkaloid dapat dilakukan dengan metoda fisika, dengan cara penyinaran kromatogram di bawah sinar  ultraviolet 254 nm dan 366 nm. Beberapa alkaloid memberikan warna fluoresensi biru atau kuning di bawah sinar tersebut, serta metoda kimia dengan menggunakan pereaksi tertentu, seperti pereaksi dragendorf membentuk endapan jingga-merah.
R – N = R + K[BiI4]               R2N+K[BiI4] (endapan jingga)
R3N+  + K[BiI4]                       K(R3N) [BiI4] (endapan jingga)
Identifikasi selanjutnya adalah dengan spektroskopi ultraviolet dan sinar tampak yang memberikan keterangan tentang tipe struktur molekulnya. Panjang gelombang maksimum yang diberikan oleh suatu senyawa dapat digunakan sebagai perkiraan awal terhadap jenis senyawa tersebut. Cara identifikasi lainnya adalah dengan menggunakan spektroskopi inframerah yang memberikan informasi tentang gugus-gugus fungsional dalam suatu senyawa. Pada umumnya senyawa alkaloid memberikan serapan khas pada daerah frekuensi 3480-3205 cm-1-N-H ), 2100-1980 cm-1 (=N+-H), 1660-1480 cm-1 (C=N-), 1350-1000 cm –l (-C-N-) dan beberapa serapan lainnya yang khas untuk masing-masing.

 Prosedur Khusus Pengujian Alkaloid
Dua metode yang paling banyak digunakan untuk menyeleksi tanaman yang mengandung alkaloid. Prosedur Wall, meliputi ekstraksi sekitar 20 gram bahan tanaman kering yang direfluks dengan 80% etanol. Setelah dingin dan disaring, residu dicuci dengan 80% etanol dan kumpulan filtrat diuapkan. Residu yang tertinggal dilarutkan dalam air, disaring, diasamkan dengan asam klorida 1% dan alkaloid diendapkan baik dengan pereaksi Mayer atau dengan Siklotungstat. Bila hasil tes positif, maka konfirmasi tes dilakukan dengan cara larutan yang bersifat asam dibasakan, alkaloid diekstrak kembali ke dalam larutan asam. Jika larutan asam ini menghasilkan endapan dengan pereaksi tersebut di atas, ini berarti tanaman mengandung alkaloid. Fasa basa berair juga harus diteliti untuk menentukan adanya alkaloid quartener.
Prosedur Kiang-Douglas agak berbeda terhadap garam alkaloid yang terdapat dalam tanaman (lazimnya sitrat, tartrat atau laktat). Bahan tanaman kering pertama-tama diubah menjadi basa bebas dengan larutan encer amonia. Hasil yang diperoleh kemudian diekstrak dengan kloroform, ekstrak dipekatkan dan alkaloid diubah menjadi hidrokloridanya dengan cara menambahkan asam klorida 2 N. Filtrat larutan berair kemudian diuji terhadap alkaloidnya dengan menambah pereaksi mayer,Dragendorff atau Bauchardat. Perkiraan kandungan alkaloid yang potensial dapat diperoleh dengan menggunakan larutan encer standar alkaloid khusus seperti brusin.
Beberapa pereaksi pengendapan digunakan untuk memisahlkan jenis alkaloid. Pereaksi sering didasarkan pada kesanggupan alkaloid untuk bergabung dengan logam yang memiliki berat atom tinggi seperti merkuri, bismuth, tungsen, atau jood. Pereaksi mayer mengandung kalium jodida dan merkuri klorida dan pereaksi Dragendorff mengandung bismut nitrat dan merkuri klorida dalam nitrit berair. Pereaksi Bouchardat mirip dengan pereaksi Wagner dan mengandung kalium jodida dan jood. Pereaksi asam silikotungstat menandung kompleks silikon dioksida dan tungsten trioksida. Berbagai pereaksi tersebut menunjukkan perbedaan yang besar dalam halsensitivitas terhadap gugus alkaloid yang berbeda. Ditilik dari popularitasnya, formulasi mayer kurang sensitif dibandingkan pereaksi wagner atau dragendorff.
Kromatografi dengan penyerap yang cocok merupakan metode yang lazim untuk memisahkan alkaloid murni dan campuran yang kotor. Seperti halnya pemisahan dengan kolom terhadap bahan alam selalu dipantau dengan kromatografi lapis tipis. Untuk mendeteksi alkaloid secara kromatografi digunakan sejumlah pereaksi. Pereaksi yang sangat umum adalah pereaksi Dragendorff, yang akan memberikan noda berwarna jingga untuk senyawa alkaloid. Namun demikian perlu diperhatikan bahwa beberapa sistem tak jenuh, terutama koumarin dan α-piron, dapat juga memberikan noda yang berwarna jingga dengan pereaksi tersebut. Pereaksi umum lain tetapi kurang digunakan adalah asam fosfomolibdat, jodoplatinat, uap jood, dan antimon (III) klorida.
Kebanyakan alkaloid bereaksi dengan pereaksi-pereaksi tersebut tanpa membedakan kelompok alkaloid. Sejumlah pereaksi khusus tersedia untuk menentukan atau mendeteksi jenis alkaloid khusus. Pereaksi Ehrlich (p-dimetilaminobenzaldehide yang diasamkan) memberikan warna yang sangat karakteristik biru atau abu-abu hijau dengan alkaloid ergot. Perteaksi serium amonium sulfat (CAS) berasam (asam sulfat atau fosfat) memberikan warna yang berbeda dengan berbagai alkaloid indol. Warna tergantung pada kromofor ultraungu alkaloid.
Campuran feriklorida dan asam perklorat digunakan untuk mendeteksi alkloid Rauvolfia. Alkaloid Cinchona memberikan warna jelas biru fluoresen pada sinar ultra ungu (UV) setelah direaksikan dengan asam format dan fenilalkilamin dapat terlihat dengan ninhidrin. Glikosida steroidal sering dideteksi dengan penyemprotan vanilin-asam fosfat. 

F.   Kegunaan Senyawa Alkaloid Dalam Kehidupan Sehari-hari
Berikut adalah beberapa contoh senyawa alkaloid yang telah umum dikenal dalam bidang farmakologi :
Senyawa Alkaloid
(Nama Trivial)
Aktivitas Biologi
Nikotin
Stimulan pada syaraf otonom
Morfin
Analgesik
Kodein
Analgesik, obat batuk
Atropin
Obat tetes mata
Skopolamin
Sedatif menjelang operasi
Kokain
Analgesik
Piperin
Antifeedant (bioinsektisida)
Quinin
Obat malaria
Vinkrist





permasalahan : 

1. reaksi yang mendasari pembentukan alkaloid membentuk basa. Basa kemudian bereaksi dengan karbanion dalam kondensasi hingga terbentuklah alkaloid. bagaimana preoses lengkap dan reaksi yang terjadi pada pembentukan alkaloid ?

2. Kebasaan alkaloida menyebabkan senyawa tersebut sangat mudah mengalami dekomposisi terutama oleh panas dan sinar mengapa bisa demikian ?

3. Hampir seluruh bagian tanaman kecubung seluruh bagiannya mengandung alkaloid tetapi jika di salahkan gunakan malah mengandung racun yang membuat pusing mengapa bisa demikian padahal Hampir seluruh bagian tanaman kecubung dapat dimanfaatkan sebagai obat ?




Komentar

  1. Dari nomor 2.
    Hasil reaksi ini sering berupa N-oksida. Dekomposisi olakloida selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu lama. Pembentukan garam dengan senyawa organik atau anorganik sering mencegah dekomposisi.

    BalasHapus
  2. Saya akan menjawab permasalahan yg pertama, karen sifat kimia Kebanyakan alkaloid bersifat basa. Sifat tersebut tergantung pada adanya pasangan elektron pada nitrogen.Jika gugus fungsional yang berdekatan dengan nitrogen bersifat melepaskan elektron, sebagai contoh; gugus alkil, maka ketersediaan elektron pada nitrogen naik dan senyawa lebih bersifat basa. Hingga trietilamin lebih basa daripada dietilamin dan senyawa dietilamin lebih basa daripada etilamin. Sebaliknya, bila gugus fungsional yang berdekatan bersifat menarik elektron (contoh; gugus karbonil), maka ketersediaan pasangan elektron berkurang dan pengaruh yang ditimbulkan alkaloid dapat bersifat netral atau bahkan sedikit asam. Contoh ; senyawa yang mengandung gugus amida.
    Kebasaan alkaloid menyebabkan senyawa tersebut sangat mudah mengalami dekomposisi, terutama oleh panas dan sinar dengan adanya oksigen. Hasil dari reaksi ini sering berupa N-oksida. Dekomposisi alkaloid selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu yang lama. Pembentukan garam dengan senyawa organik (tartarat, sitrat) atau anorganik (asam hidroklorida atau sulfat) sering mencegah dekomposisi. Itulah sebabnya dalam perdagangan alkaloid lazim berada dalam bentuk garamnya.

    BalasHapus
  3. Baiklah saya akan menjawab permasalahan no 3
    Hampir seluruh bagian tanaman kecubung dapat dimanfaatkan sebagai obat. Hal ini disebabkan seluruh bagiannya mengandung alkaoida atau disebut hiosamin (atropin) dan scopolamin, seperti pada tanaman Atropa belladona.Alkahoid ini bersifat racun sehingga pemakaiannya terbatas pada bagian luar. Biji kecubung mengandung hiosin dan lemak, sedangkan daunnya mengandung kalsium oksalat. Berkhasiat mengobati rematik, sembelit, asma, sakit pinggang, bengkak, encok, eksim, dan radang anak telinga.
    Kecubung mengandung senyawa kimia alkaloid. terdiri dari atropin, hiosiamin, dan skopolamin yang bersifat antikholinergik. Kecubung juga mengandung hiosin, zat lemak, kalsium oksalat, meteloidina, norhiosiamina, norskopolamina, kuskohigrina, dan nikotina.
    Zat yang bermanfaat sebagai pereda asma adalah hipociamin dan skopolamin yang besifat antikholinergik. Efek dari zat tersebut sangat meringankan penderita asma.
    Alkaloid dapat melebarkan kembali saluran pernapasan yang menyempit akibat serangan asma. Lalu, skopolamin juga mempunyai aktivitas depresan untuk susunan saraf pusat, sehingga kerap digunakan sebagai obat antimabuk.

    BalasHapus
  4. Baiklah saya akan mencoba menjawab no 2
    Hasil reaksi ini sering berupa N-oksida. Dekomposisi olakloida selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu lama. Pembentukan garam dengan senyawa organik atau anorganik sering mencegah dekomposisi.

    BalasHapus
  5. Saya akan menjawab permasalahan yg pertama, karen sifat kimia Kebanyakan alkaloid bersifat basa. Sifat tersebut tergantung pada adanya pasangan elektron pada nitrogen.Jika gugus fungsional yang berdekatan dengan nitrogen bersifat melepaskan elektron, sebagai contoh; gugus alkil, maka ketersediaan elektron pada nitrogen naik dan senyawa lebih bersifat basa. Hingga trietilamin lebih basa daripada dietilamin dan senyawa dietilamin lebih basa daripada etilamin. Sebaliknya, bila gugus fungsional yang berdekatan bersifat menarik elektron (contoh; gugus karbonil), maka ketersediaan pasangan elektron berkurang dan pengaruh yang ditimbulkan alkaloid dapat bersifat netral atau bahkan sedikit asam. Contoh ; senyawa yang mengandung gugus amida.
    Kebasaan alkaloid menyebabkan senyawa tersebut sangat mudah mengalami dekomposisi, terutama oleh panas dan sinar dengan adanya oksigen. Hasil dari reaksi ini sering berupa N-oksida. Dekomposisi alkaloid selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu yang lama. Pembentukan garam dengan senyawa organik (tartarat, sitrat) atau anorganik (asam hidroklorida atau sulfat) sering mencegah dekomposisi. Itulah sebabnya dalam perdagangan alkaloid lazim berada dalam bentuk garamnya.
    Permasalahan 2
    Hasil reaksi ini sering berupa N-oksida. Dekomposisi olakloida selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu lama. Pembentukan garam dengan senyawa organik atau anorganik sering mencegah dekomposisi.

    BalasHapus

Posting Komentar

Postingan populer dari blog ini

STEROID

Karakteristik Senyawa Organik Bahan Alam

Proses Metabolisme Lemak Di Dalam Tubuh